
CS414 Section 2
Project 2: Preemption, ...

Krzysztof Ostrowski
krzys@cs.cornell.edu
Slides modified from previous years’ slides

mailto:krzys@cs.cornell.edu
mailto:krzys@cs.cornell.edu


What do you have to do?

Required
Adding preemption to your scheduler

You will heavily rely on clock interrupts in this project
All your minithreads code must now be made thread-safe

Sleeping with timeout
Multilevel feedback scheduling policy

Strict priority scheduling between levels and round-robin 
within a level, quanta doubling at each level
Feedback used to move threads between the queues

Optional
Unreliable datagrams



A more detailed plan (1)

Start receiving clock interrupts

Register interrupt handler
Start measuring the elapsed time

Add preemption

Synchronize access to global structures
Your „system” code may now be interrupted at any time
Our method of choice: disabling interrupts

Switch threads in the interrupt handler



A more detailed plan (2)

Add alarms

Create a structure to manage info about alarms
Use your software clock to measure time
Start firing alarms in the clock interrupt handler

Add sleeping

minithread_sleep_with_timeout()
Register alarms, block and unblock threads



A more detailed plan (3)

Add multi-level feedback scheduling

Implement multilevel feedback queues

Use a regular queue as the underlying structure
Add a cyclic search

Extend your scheduler to use the new policy

Switch to the new data structure
Cycle through all the four levels (to avoid starvation)
Add feedback and move threads between levels



The basics of interrupts (1)

Installing the interrupt handler

Register it during initialization

typedef void (*interrupt_handler_t)(void* );
void minithread_clock_init(interrupt_handler_t clock_handler);

How to declare it in your code
void clock_handler(void* arg) { ...
}



The basics of interrupts (2)

Remember that...

Initially interrupts are disabled, need to enable them

You can still receive interrupts while in the interrupt 
handler, so you should disable them temporarily

You must not spend much time inside the handler

Should not call system functions, print to screen etc. since 
they consume too much time

You definitely... CANNOT BLOCK!



The basics of interrupts (3)

Disabling clock interrupts (what to call)

typedef int interrupt_level_t;#define ENABLED 1#define DISABLED 0interrupt_level_t set_interrupt_level(interrupt_level_t newlevel);

A strongly recommended way to use the above 

interrupt_level_t intlevel = set_interrupt_level(DISABLED);
(here comes your code)
set_interrupt_level(intlevel);



Interrupts and time

Adjusting the frequency

Need to modify ”interrupts.h”
#define SECOND 1000000
#define MILLISECOND 1000
#define PERIOD (100*MILLISECOND)

Measuring elapsed time

Don’t use system functions (they are way too slow) 
Software clock: just count the interrupts

extern long ticks;

granularity 1µs



More about interrupts (1)

How are interrupts processed?

Always executed in the context of some thread...
...whichever happens to be currently running.

What happens after the interrupt:

Current state is saved on the stack of the running thread
Handler is called
After the handler completes, the saved state is restored



More about interrupts (2)

Interrupts and system calls

System libraries are not thread-safe...

...so interrupts are disabled (underneath, not by you) while the
process is inside system calls.

What happens if e.g. a thread spends a lot of time 
printing to the screen?

Most interrupts are missed
Scheduler cannot promptly switch between processes
Software clock is drifting, alarms don’t fire on time



Adding synchronization (1)

Why the need to synchronize

Clock interrupts could arrive at any time

Any thread might be preempted while reading or 
updating the structures of the scheduler itself...

...so this way multiple threads could be updating 
the same structures at the same time!

Clock handler itself needs to access the same 
global structures (to make scheduling decisions)



Adding synchronization (2)

What not to use: spin locks

Cannot use it in the interrupt handler
Any kind of active waiting would be too time consuming
And anyway... who’s going to enable the lock if it’s locked?

What to use: disabling interrupts

A good, efficient method on uniprocessors
Critical section must be short!
Disabling interrupts unnecessarily will be penalized
Follow the recommended pattern of usage



Interrupts: Beware...

Beware of the following...
Unmatched enabling / disabling

You could be called with interrupts disabled 
(enabling them will compromise system safety)
You should never let the application code run 
with interrupts disabled

Disabling interrupts unnecessarily
You should not disable them outside minithreads

Disabling interrupts for too long



Alarms: Implementing

What you need to implement:

int register_alarm(
int delay, void (*func)(void*), void *arg);

void deregister_alarm(int alarmid);

What you need underneath...

Some structure to keep information about alarms
Code in interrupt handler that fires alarms

Use the global variable ticks that you’re updating on every 
interrupt to calculate the elapsed time



Alarms: Using

Issues with using alarms

Alarms are fired in the interrupt handler, therefore...

Interrupts are disabled at that time
You cannot spend much time in your callback
You cannot block

Alarm handler is called in the context of the currently 
executing thread...

...which most of the time will be different from the thread 
that registered the alarm.



Sleeping with timeout (1)

What you need to implement:

void minithread_sleep_with_timeout(int delay);

Semantics:

Block the caller (and relinquish the CPU)
So you don’t put him back on the ready queue

Wake up after the timeout expires
Make it runnable (put back on the ready queue), but not 
necessarily the current thread.



Sleeping with timeout (2)

How to implement

You should use the alarm functions

You should use the semahores rather than 
explicit minithread_start and minithread_stop

Yields a cleaner, more modular structure

Avoid race conditions
Should register alarm / start waiting atomically



Multilevel queues

What to implement:

typedef void* multilevel_queue_t;
multilevel_queue_t multilevel_queue_new(int number_of_levels);
int multilevel_queue_enqueue(multilevel_queue_t queue, int level, any_t item);
int multilevel_queue_dequeue(multilevel_queue_t queue, int level, any_t *item);
int multilevel_queue_free(

multilevel_queue_t queue);



A new scheduling policy

Level 1

Level 2

Level 3

Level 4

round robin 
within a level priority scheduling

between levels...

...but we’re 
not always 
starting at the 
highest level 
(no starvation)



Changing scheduling policy (1)

Choosing threads for execution

We cycle through all four levels (moving starting point for dequeue)

After a given number of quanta, move to next level

Spend 80 / 40 / 24 / 16 quanta in levels 0 to 3, respectively

While at a given level, look for threads to schedule starting from a 
corresponding queue (keep looking in the following levels if empty)

Skip to next level if a queue is empty

While queue nonempty, keep scheduling threads from this queue in
a round-robin fashion

Asign 1 / 2 / 4 / 8 quanta at a time at levels 0 to 3, correspondingly



Changing scheduling policy (2)

Adding priorities to threads
We deed to extend the TCB to keep those
Use a thread’s priority when enqueueing it
Priority determines the queue...

...and the queue determines time slice and the 
frequency with which a thread will be scheduled

Initially all threads get the highest priority
As time goes, thread priorities decrease

Switch to a lower priority when a thread has 
outrun its time slice (detect it in interrupt handler)



Changing scheduling policy (3)

Adding aging

Need to lower the thread’s priority (in TCB)

Do it when when changing the active thread
Keep the current priority as it is

When a thread is blocking (stop and semahores)
When a thread is yielding

Lower priority (if not the lowest)
When a thread has outrun its quanta

Priorities are never raised
Could you think of any other reasonable policies?



Grading

Correctness
Beware of race conditions: synchronization!
Correct enabling and disabling of interrupts, follow our pattern
Cleaning threads and structures, avoiding memory leaks

Efficiency
Disabling interrupts: only for a short time and only when it is 
indeed necessary
Processing in the interrupt handler should be fast!
Idle thread should not take up non-idle time
Consider using semaphores if necessary rather than polling

Elegance
Your code should have a modular structure


	CS414 Section 2Project 2: Preemption, ...
	What do you have to do?
	A more detailed plan (1)
	A more detailed plan (2)
	A more detailed plan (3)
	The basics of interrupts (1)
	The basics of interrupts (2)
	The basics of interrupts (3)
	Interrupts and time
	More about interrupts (1)
	More about interrupts (2)
	Adding synchronization (1)
	Adding synchronization (2)
	Interrupts: Beware...
	Alarms: Implementing
	Alarms: Using
	Sleeping with timeout (1)
	Sleeping with timeout (2)
	Multilevel queues
	A new scheduling policy
	Changing scheduling policy (1)
	Changing scheduling policy (2)
	Changing scheduling policy (3)
	Grading

